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Accurate diagnosis of the initial phase of Alzheimer’s disease (AD) is essential and
crucial. The objective of this research was to employ efficient biomarkers for the
diagnostic analysis and classification of AD based on combining structural MRI
(sMRI) and resting-state functional MRI (rs-fMRI). So far, several anatomical magnetic
resonance imaging (MRI) imaging markers for AD diagnosis have been identified. The
use of cortical and subcortical volumes, the hippocampus, and amygdala volume, as
well as genetic patterns, has proven to be beneficial in distinguishing patients with AD
from the healthy population. The fMRI time series data have the potential for specific
numerical information as well as dynamic temporal information. Voxel and graphical
analyses have gained popularity for analyzing neurodegenerative diseases, such as
Alzheimer’s and its prodromal phase, mild cognitive impairment (MCI). So far, these
approaches have been utilized separately for the diagnosis of AD. In recent studies,
the classification of cases of MCI into those that are not converted for a certain
period as stable MCI (MCIs) and those that converted to AD as MCIc has been less
commonly reported with inconsistent results. In this study, we verified and validated
the potency of a proposed diagnostic framework to identify AD and differentiate
MCIs from MCIc by utilizing the efficient biomarkers obtained from sMRI, along with
functional brain networks of the frequency range .01–.027 at the resting state and
the voxel-based features. The latter mainly included default mode networks (amplitude
of low-frequency fluctuation [ALFF], fractional ALFF [ALFF], and regional homogeneity
[ReHo]), degree centrality (DC), and salience networks (SN). Pearson’s correlation
coefficient for measuring fMRI functional networks has proven to be an efficient means
for disease diagnosis. We applied the graph theory to calculate nodal features (nodal
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degree [ND], nodal path length [NL], and between centrality [BC]) as a graphical
feature and analyzed the connectivity link between different brain regions. We extracted
three-dimensional (3D) patterns to calculate regional coherence and then implement a
univariate statistical t-test to access a 3D mask that preserves voxels showing significant
changes. Similarly, from sMRI, we calculated the hippocampal subfield and amygdala
nuclei volume using Freesurfer (version 6). Finally, we implemented and compared the
different feature selection algorithms to integrate the structural features, brain networks,
and voxel features to optimize the diagnostic identifications of AD using support vector
machine (SVM) classifiers. We also compared the performance of SVM with Random
Forest (RF) classifiers. The obtained results demonstrated the potency of our framework,
wherein a combination of the hippocampal subfield, the amygdala volume, and brain
networks with multiple measures of rs-fMRI could significantly enhance the accuracy
of other approaches in diagnosing AD. The accuracy obtained by the proposed
method was reported for binary classification. More importantly, the classification results
of the less commonly reported MCIs vs. MCIc improved significantly. However, this
research involved only the AD Neuroimaging Initiative (ADNI) cohort to focus on the
diagnosis of AD advancement by integrating sMRI and fMRI. Hence, the study’s primary
disadvantage is its small sample size. In this case, the dataset we utilized did not fully
reflect the whole population. As a result, we cannot guarantee that our findings will be
applicable to other populations.

Keywords: Alzheimer’s disease, rs-fMRI, brain network, DMN, SN, features selection, machine learning, SVM

INTRODUCTION

With the increase and the prevalence of age-related mental
decline, researchers have been increasingly interested in studying
pathological and regular aging in an attempt to identify
early markers of neuronal disease. Indeed, due to the high
expense and pharmaceutical burden of progressive disorder on
the national healthcare system, research targeted at providing
a timely and differential assessment of these disorders is
essential. Alzheimer’s disease (AD) is the most prevalent
neurodegeneration disease in the world, impacting millions
of individuals (2020 Alzheimer’s disease facts and figures, 2020).
The identification of precise and accurate biomarkers of early
AD advancement will aid researchers and doctors in the
development of novel medications and the monitoring of
their efficacy, as well as reduce the time and expense of
clinical examination. The National Institute of Neurologic and
Communication Disorders and Stroke and the Alzheimer’s
disease and Related Disorders Association (NINCDS-ADRDA)
created clinical diagnostic guidelines for AD based on the
binary method in the 1980s. The importance of cognitive
deterioration in the detection of AD is mentioned in this
technique (McKhann et al., 1984). Later, neuropathological
evidence in the form of neurofibrillary tangles and senile plaques
(Hyman and Trojanowski, 1997) was introduced. AD diagnostic
regulation was enhanced in 2011 by the National Institute on
Aging-Association Alzheimer’s Group. Additional features can be
obtained by measuring cerebrospinal fluid (CSF), neurogenetic
approach, tau, amyloid, and neuronal damage features as assessed

by neuroimaging analysis, including MRI, positron emission
tomography (PET), and functional MRI (fMRI). The use of
biomarkers, such as the Mini-Mental State Examination (MMSE)
score, magnetic resonance imaging (MRI) biomarkers (such
as normalized whole-brain volume and hippocampal volume),
and CSF biomarkers (amyloid–42, tau), as well as combined
metabolic disorders, to detect AD and predict mild cognitive
impairment (MCI) conversion shows promising future (van
Maurik et al., 2017). MRI and PET imaging alterations allow
for the determination of atrophic areas and amyloid/metabolism
indicators (Zhang et al., 2011; Garali et al., 2018), allowing for
the detection of AD even at an early stage (Jack et al., 2019).
Because of the non-invasive nature of MRI, a lot of work has
gone into improving the MRI processing scheme in order to
uncover MRI-associated markers that may be used to increase
the efficiency of Alzheimer’s diagnosis. There is a lot of evidence
that various anatomical brain areas are damaged at different
stages of the pathology, with the amygdala, hippocampus, and
entorhinal cortex being the first to be impacted. Despite the
fact that these areas are responsible for AD, they have yet to
be thoroughly investigated. The hippocampal sub-regions are
widely recognized to have a key part in the short-to-long-
term memory assimilation process. The hippocampus region is
more likely to be the first section of the brain to deteriorate.
Furthermore, clinical research has revealed that the hippocampus
region is one of the most often utilized and effective biomarkers
for detecting the transition from MCI to AD (Platero et al.,
2019; Liu et al., 2020). Despite this, due to the low resolution
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of MRI, it is commonly treated as a single entity. With major
advancements in high-resolution MRI image data acquisition
techniques, new possibilities for studying specific hippocampal
sub-regions have emerged. CA1 volume measures were found to
be more sensitive than total hippocampal volumetry for detecting
structural alterations in the early stages of AD (Zheng et al.,
2018). Hippocampus sub-regions have also been connected to
age-related memory loss and certain features of memory patterns
(Zheng et al., 2018). As a result, early identification of AD or its
prodromal stage, MCI (Petersen, 2004) is critical for consistent
and effective diagnosis, that can assist to slow the course of
the disease. As an intermediate stage of Alzheimer’s, individuals
with MCI are commonly marked by a cognitive and functional
decline in the regular aging process and is affected by memory
decline without the disorder (Petersen, 2004; Angelucci et al.,
2010), which is commonly characterized by the overall decline
in cognition on various brain regions. MCI is considered as prior
AD (Petersen, 2004). Individuals with MCI develop Alzheimer’s
subsequently, wherein symptoms emerge over the period of 2–
3 years on average (Lopez et al., 2012). An eventual community
support analysis in the old individual indicated that the transition
rate of MCI from Alzheimer’s to various forms of dementia is
approximately 10–15% every year (Wei et al., 2016). Previous
research advises some individuals cannot transit to Alzheimer’s,
and quite continue in stable form clinically for a long time,
which is considered as stable MCI (MCIs), whereas MCI that
converts to AD is referred to as MCIc. Previous research from
Alzheimer’s analysis advocates the hypothesis that Alzheimer’s
is commonly characterized by a functional disconnection of the
neuronal pattern and functional connectivity (FC) of various
brain areas, which is also shown in the initial stage of MCI or even
before the transition to Alzheimer’s (Bishop et al., 2010; Clem
et al., 2017; de Vos et al., 2018).

Biomarkers obtained from various imaging techniques, such
as PET, resting-state fMRI (rs-fMRI), and structural MRI (sMRI),
have shown beneficial aspects in the MCI and AD diagnosis
(Ju et al., 2019). Particularly, the fMRI technique presents
a wide analysis platform to quantify the functional patterns
of the brain by calculating the correlation among intrinsic
blood-oxygen-level-dependent (BOLD) frequency variation in
multiple brain areas at resting state. Being sensitive to various
brain region spontaneous neuronal activity, BOLD signal can
be therefore utilized as an effective noninvasive biomarker
for analyzing neuronal disease at a whole-brain level such as
Alzheimer’s. FC, which gives the temporal interaction of BOLD
frequency among various brain areas, can reveal how structurally
isolated and functionally related brain regions communicate.
Therefore, a functional network study utilizing fMRI images will
serve an immense potentiality for automated disease diagnosis.
A large literature has analyzed AD-generated alteration in
functional networks on rs-fMRI (Hojjati et al., 2017; Zhang
et al., 2019). The rs-fMRI presents the insight on a dynamic
imaging modality for pathological identification of FC not only
in an individual with Alzheimer’s but also in those with other
neuropsychiatric or neurological disorders (Greicius, 2008).
Evidence from previous studies indicates that functional relation
at the resting state shows the connection link of work-related

knowledge (Ito et al., 2017), in which functional networks
have proven to be highly valuable and sensitive markers for
Alzheimer’s (Sheline et al., 2010). Grieder et al. (2018) advise that
loss in cognitive ability in AD individual are directly connected
to the brain network complexity pattern. In a previous fMRI
study, FC has been reported to indicate Alzheimer’s related
cognitive impairment in older individuals with healthy cognition,
AD, and MCI (Lin et al., 2018). Some fMRI analyses also
indicated that the pathophysiology of Alzheimer’s is correlated
with statistical alteration of regional spontaneous low-frequency
BOLD variation coherence estimation in the relaxed phase. For
voxel-wise analysis, the metrics used in these studies included
regional homogeneity (ReHo) (Zang et al., 2004; He et al.,
2007); the amplitude of low-frequency fluctuation (ALFF) (Zou
et al., 2008; Li et al., 2017), and fractional ALFF (fALFF). These
studies showed that the precuneus (PCu) and the posterior
cingulate cortex (PCC) had the larger ReHo abnormality among
Alzheimer’s as compared to cognitively normal individuals
(p < 0.05). The fALFF along with ALFF analysis on fMR
images (Han et al., 2011) suggested, individuals with MCI are
characterized by reduced fALFF measure in the larger brain areas,
which includes temporal cortices and occipital. The FC of rs-
fMRI (Li et al., 2017), indicated, a brain area with major FC was
highly presented in the default mode network (DMN) regions
(Hafkemeijer et al., 2012; Zhang et al., 2020) and primarily affect
the PCC and bilateral PCu (Dai et al., 2015). Both AD and aMCI
have been found to target large-scale networks, including reduced
DMN connectivity and increased salience network (SN) (Greicius
et al., 2004; Zhou et al., 2010; Zhou and Seeley, 2014) connectivity,
as well as aberrant connectivity between networks (Brier et al.,
2012) in AD and disturbed connectivity in aMCI, especially in
relation to the DMN (Lee et al., 2016; Yang et al., 2017; Zhang
et al., 2017), using resting-state functional connectivity methods
that quantify the temporal synchrony between brain regions.
These are all statistically important discoveries for cluster-
level comparison. Yet, the classification potential of the above-
indicated biomarker identified the individual with MCI/AD into
one of the categories (MCI/AD vs. healthy controls [HC]),
which is a highly complex work as compared to the study of
different groups (Rathore et al., 2017). Recently, another analysis
recommended that the biomarkers retrieved from functional
networks assessment and machine learning techniques using rs-
fMRI provide an effective framework for accurate and efficient
identification. Chen et al. (2011) utilized large-scale networks
(LSN) technique with 95% area under the curve (AUC) to classify
patients into amnestic MCI (aMCI) and cognitively healthy.
Challis et al. (2015) presented the GP-LR technique with SVM
and obtained an accuracy of 75% to diagnose healthy individuals
from aMCI. Khazaee et al. (2015) utilized time series from a
brain network with linear SVM as a classifier to identify disease
individuals, their experimental result achieved 100% accuracy on
classification. This could be due to the limited number of sample
and their feature reduction technique which was the single-
variable Fischer score method. In another study, they utilized
features obtained both spatial and temporal variation from
dynamic connectivity networks (DCNs). Finally, they combined
it as a feature to evaluate the multi-kernel technique along with
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manifold regularization multi-task feature learning and obtained
78.8% of accuracy for the identification of EMCI and LMCI (Jie
et al., 2018). It has been proven that a functional graph measure
with a machine learning technique using rs-fMRI can precisely
identify individuals with MCI, individuals with Alzheimer’s, and
healthy control (Xiang et al., 2013).

However, large of the literature collected MCIs and MCIc
groups into a single MCI group (He et al., 2008; Khazaee
et al., 2015), and very few works of literature have analyzed the
potentiality of rs-fMRI to identify differences among the two
groups (Khazaee et al., 2015). In addition, Zuo et al. (2010)
categorized the BOLD frequency into five frequency bands. Brain
function in individuals with AD and MCI was significantly
different at hippocampus, medial prefrontal, and posterior
cingulate regions in these frequency bands. From this framework,
we aimed to assess the potency for diagnostic classification
to differentiate MCIs and MCIc, along with other groups, by
using the biomarkers obtained from sMRI and functional brain
networks during the resting state. Based on the classification
results, to discover highly sensitive biomarkers, we can recognize
accurately and precisely why sensitive biomarkers in the
brain altered with disease advancement. We hypothesized that
providing cognitive training and appropriate treatment for an
individual’s highly sensitive brain area at various phases in disease
advancement can avert the growth of Alzheimer’s conversion. It
is better to observe that large of the abovementioned rs-fMRI
technique utilized only time-series networks to compare different
groups. However, using only time series for a feature vector
obtained by rs-fMRI modality is possibly not precise to present
the spatiotemporal pattern of the whole brain (He et al., 2008).

Volume alterations in the hippocampus and amygdala are
considered a primary feature of AD and are utilized as a
diagnostic indication. In Alzheimer’s patients, hippocampal
and amygdala atrophy generally spreads to other parts of the
brain (Josephs et al., 2017; Feng et al., 2018). Anatomical MR
imaging can be used to visualize the pattern of hippocampus
amygdala, cortical, and subcortical atrophy. Which is important
in the clinical diagnosis of AD (Feng et al., 2018). Therefore,
the fundamental aim of this framework was to analyze the
sMRI and rs-fMRI data to their full potential by combining
hippocampal sub-volume, amygdala nuclei volume of sMRI,
brain networks, and multi-measure voxel-based features of
rs-fMRI to identify AD. Firstly, the cortical and subcortical
segmentation was performed with Freesurfer (version 6),
and then hippocampus subfield and amygdala nuclei volume
segmentation was performed with Freesurfer’s segmentHA_T1.sh
function (Fischl, 2012). Secondly, we processed the signal into the
0.01–0.027 Hz frequency band at the resting phase. Thereafter,
we created a brain network by evaluating Pearson’s correlation
coefficients among time series of the entire brain region.
Afterward, we performed a threshold operation to obtain a binary
undirected brain network. Subsequently, we obtained graph
elements, such as global efficiency, local efficiency, characteristic
path length, clustering coefficient, and SmallWorlds, to calculate
the parameters of functional brain networks. Likewise, we
obtained maps of three-dimensional (3D) regional coherence
(fALFF, ALFF, ReHo, and DC) for each patient. After this we

implemented univariate statistical two-sample t-tests for the
entire 3D-brain area among training classes to obtain an analysis
mask that preserved the original set of significant voxel-based
features, generating notable differences in any one of the voxel
measures, that is, fALFF, ReHo, FALFF, and DC. In this study,
we also applied brain networks and voxel features separately,
and finally, we combined both sMRI and rs-fMRI features.
At the feature selection stage, we implemented and analyzed
three different feature selection techniques to obtain the optimal
features. To achieve unbiased classification performance, SVM
with the cross-validation method (CV) was implemented as a
classifier. More importantly, we also compare the performance of
our model with the ensemble learning approach using Random
Forest (RF) classifiers.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained from the
AD Neuroimaging Initiative (ADNI)1 database. The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.
Individual inclusion criteria for subjects were mentioned in the
ADNI conduct. The included individuals were between the ages
of 53 and 93 years. All individuals were able and willing to endure
all test procedures, along with neuroimaging, and admitted to
a longitudinal investigation. Psychoactive treatment was not
included in the assessment. In this framework, we obtained data
for all individuals accessible on the ADNI webpage. In total, 213
individuals were included as either AD (n = 63), MCIs (n = 37),
MCIc (n = 45), or HC (n = 68), matched with age and sex ratio.
Group categories were sorted through the functional activities
questionaries (FAQ) record between 0 and 4, the Mini-Mental
State Examination (MMSE) record 26–30, and the Geriatric
Depression Scale (GDS) record between 0 and 4. For the MCI
case, the FAQ record was 0–16, the MMSE record was 24–30,
and the GDS record was 0–13. For the MCIc case, the FAQ
record was 0–18, the MMSE record was 18–30, and the GDS
record was 0–10.

For the AD case, the individual had a global CDR score of
1, an FAQ score of 3–28, an MMSE score of 14–24, and a GDS
score of 0–7. Individuals with MCI who had been followed for
less than 18 months and did not convert were not included in
this study. Table 1 presents the demographic report of individuals
who participated in the study, including the sex ratios and
mean age for each category. Statistically significant differences
in the clinical and demographic features were assessed among
these categories, Student’s t-test was utilized at a.05 significance
level. We did not notice significant changes (p > 0.05) among
the category in sex ratio or age. For unbiased evaluation of
performance, group classifications were randomly shuffled and

1http://adni.loni.usc.edu/
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split into k subgroup. For model evaluation training, datasets
were trained and classification performance was measured on
diagnostic sensitivity, specificity, F1-score, and Cohen’s Kappa
index on the independent testing set. Sex and age distribution
were preserved on the splitting procedure.

Structural MRI Preprocessing
From the ADNI webpage, we obtained 1.5-T T1-weighted MR
images. The MRI scans were collected using Philips, GE, or
Siemens Medical system scanners from data centers. Because
the acquisition methodology of each scanner was different,
ADNI performed an image normalization step. Image corrections
encompassed calibration, image geometry distortion due to
gradient non-linearity (grad-warp), a decrease in intensity non-
uniformity due to waves, or a decrease in residual intensity non-
uniformity of the 1.5-T scans utilized by ADNI. On the ADNI
website, we can get more information regarding the sMRI. All
scans had a resolution of 176×256×256 and were spaced 1 mm
apart. We used the Freesurfer2 (version 6) (Fischl, 2012) toolbox
to pre-process the collected sMRI images in our experiment.

Resting-State Functional MRI Image
Acquisition
Philips Medical sMRI scanner of 3 T was utilized to obtain
the fMR images. The rs-fMR images were acquired through
the ADNI webpage. At the time of image acquisition, patients
were asked to not to think, to lie in the scanner, and to relax.
The parameters sequences were as follows: TR = 3,000 ms,
plus sequence = GR, flip angle = 800◦, TE = 30 ms, data
matrix = 64 × 64, slice thickness = 3.33 mm, pixel spacing
X = 3.31 mm and Y = 3.31 mm, axial slices = 48, time
points = 140, and no slice gap.

Resting-State Functional MRI
Preprocessing
Image processing procedures were achieved by utilizing Data
Processing Assistant for Resting-State fMRI (DPARSF) (Yan and
Zang, 2010) containing Statistical Parametric Mapping (SPM)3

and Resting-State fMRI Data Analysis Toolkit (REST)4. For

2http://surfer.nmr.mgh.harvard.edu/
3http://www.fil.ion.ucl.ac.uk/spm
4http://restfmri.net

TABLE 1 | Neuropsychological and demographic characteristics of participants.

Group AD (n = 63) MCIs (n = 37) MCIc (n = 45) HC (n = 68)

Sex (M/F) 37/26 15/22 27/18 33/35

Age 74.51 ± 7.18 73.32 ± 7.58 73.81 ± 7.91 76.37 ± 7.13

FAQ score 19.95 ± 7.73 1.72 ± 2.15 7.23 ± 7.18 0.14 ± 0.37

NPI-Q score 4.85 ± 5.13 1.87 ± 1.75 2.78 ± 2.85 0.37 ± 0.83

GDS score 2.32 ± 2.87 1.28 ± 1.05 2.35 ± 2.95 1.19 ± 1.95

MMSE score 19.95 ± 5.15 29.12 ± 1.03 25.17 ± 3.45 29.25 ± 1.75

CDR 0.94 ± 0.27 0.50 ± 0.0 0.50 ± 0.28 0.00 ± 0.13

Values are means or numbers ± standard deviations.
MMSE, mini-mental examination; NPI-Q, neuropsychiatric inventory questionnaire;
FAQ, functional activities questionaries; GDS, geriatric depression scale.

stabilization and adaptation of individuals, participants’ first 10
time points were removed followed by correction of the last slice
time. To compensate for the effect of head motion realignment,
spatial transformation of a six-parameter rigid body was used.
All spatial motion displacements were performed for <3 mm
and <30◦ of rotation in each direction. Further, co-registration
of rs-fMR images to 3D-T1 structural high-resolution images
was carried out. The Montreal Neurological Institute (MNI)
space was undertaken to normalize 3D-T1 structural MR images
by non-linear wrapping based on Diffeomorphic Anatomical
Registration via Exponential Lie Algebra (DARTEL). Individual
fMRI images were then spatially normalized to the MNI field
utilizing the parameters collected from the normalization of
the structural image and simultaneously resampling them into
3-mm isotropic voxels. The 6-mm full-width half-maximum
Gaussian kernel was utilized on normalized individual rs-
fMR data. Linear detrending and band-pass filtering at 0.01–
0.027 Hz were performed. The 6-mm FWHM Gaussian kernel
for spatial smoothing was implemented. The six head motion
parameter, the global mean signal, the white matter (WM),
and the CSF signal were discarded as nuisance variance to
decrease the motion effects and non-neuronal BOLD variation
(Hojjati et al., 2018). Similarly, for voxel-based features, mask
images were obtained according to the subject specialized
normalized T1 anatomical images. The voxel measures within
the mask were utilized for the analysis. The mask images
obtained were utilized for developing various testing in further
investigation and analyses.

Proposed Framework
Figure 1 represents the proposed procedure used in this
framework. The first step of the framework was to prepare
and process the sMRI (hippocampal subfield, amygdala volume)
and rs-fMRI images to obtain the corresponding time series
and whole-brain 3D measurements. From time-series data,
we constructed the brain network. Similarly, we obtained
the fALFF, ReHo, ALFF, DC, and SN feature vectors from
3D measures. From brain network construction, we obtained
a nodal degree (ND), betweenness centrality (BC), and the
nodal path length (NL). Similarly, for the voxel-based 3D
structural model, we retrieved a 3D mask that determined
a set of “effective” voxels to conduct statistical univariate
t-tests. Thereafter, we combined the hippocampal-amygdala
subfield volume (sMRI), the brain network, and voxel-based
feature vectors (rs-fMRI) for the final classification. We then
applied the feature reduction technique on the integrated
training features set to choose highly significant features
vectors to train the SVM and the RF classifiers. We finally
obtained significant feature rank and fed the feature vectors
as the training sample, and we also obtained the testing
sample for classification. Owing to the limited size of the
dataset, we utilized a CV of 10-fold to validate the diagnosis
performance of the classification for the proposed framework.
While performing the 10-fold CV, 90% of the total sample
was utilized for the training process and the remaining
10% for testing.
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FIGURE 1 | Overview of the proposed framework.

Hippocampal Subfield and Amygdala
Nuclei Volume
Hippocampal subregions in MRI have been demonstrated to
play a role in predicting AD in those with moderate symptoms
(van Maurik et al., 2017). It is more crucial to assess the
sub-volume of the hippocampus in order to compute atrophy
measures on the hippocampal subfield more precisely and to

identify AD in individuals with MCI as well as normal controls
(Zheng et al., 2018). Hippocampal segmentation was carried out
utilizing the Freesurfer (Fischl, 2012) software in our procedure.
First, the cortical and subcortical segmentation was performed
with Freesurfer (version 6), and then the hippocampal subfield
and amygdala nuclei volume segmentation were performed
with Freesurfer’s segmentHA_T1.sh function (Fischl, 2012), and
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details can be found at5. Hippocampus atrophy is thought
to be a key indicator of AD (Sørensen et al., 2017). The
hippocampal subregion parcellation approach, provided by
Freesurfer, was finally used to estimate hippocampal subregions
and amygdala nuclei subfields (version 6). This program creates
a computational parcellation of the amygdala and hippocampal
regions using an atlas-based probabilistic Bayesian interface and
ultra-high resolution ex-vivo MRI imaging data (0.1–0.15 mm
isotropic). Simultaneous segmentation of both structures ensures
that there is no overlap between them and that there is no chance
of a gap between them (Saygin et al., 2017). The subiculum,
the presubiculum, the parasubiculum, the cornu amonis fields 1,
2/3, and 4 (referred to as CA1, CA3, and CA4), the granule cell
sheet of the Dentate Gyrus (DG), a transition of Hippocampus-
Amygdaloid Area (HATA), the fimbria (a white matter area), the
molecular coat of DG, the fissure region of the hippocampus,
and the tail of the hippocampus are the 12 regions, as illustrated
in Figure 2. Similarly, the accessory basal and basal, the central
medial, the lateral, the cortical, and the anterior amygdala
regions, the para laminar nucleus, and the Cortico-Amygdaloid
Transition Area (CTA) are the nine subregions of the amygdala.

5https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAndNucleiOf
Amygdala

Functional Network Construction
The brain network nodes were constructed by parcellation of the
entire brain into 90 regions of interest by utilizing the automated
anatomical labeling (AAL) template that gives an entire
functional division of the cortex (Tzourio-Mazoyer et al., 2002).
The time series obtained inside every voxel of the 90 regions
of interest were averaged, which produced signals that served
as the nodal features. Pearson’s correlation coefficient among
the time series of the entire brain region was used to construct
the value of the edges for networks. Then, Fischer’s r-to-z
conversion was practiced on the rough random connectivity
matrix to enhance the partial correlation coefficient uniformity
(Risacher et al., 2009; Wee et al., 2012). The obtained matrix
is symmetrical diagonally with zero value (Zhan et al., 2013).
The sparsity threshold was utilized to define the value of the
possible edges on an individual’s brain networks. The threshold
serves as the connection cost for networks, which is explained
as the ratio of the total possible number of connections to
the suprathreshold relation within the brain networks (Sanz-
Arigita et al., 2010). There is no straightforward approach to
define a single sparseness threshold because various sparseness
drive various analysis outcomes (He et al., 2009; Hojjati et al.,
2018). This experiment examined each network at costs ranging
from 5 to 25% at 1% intervals. In addition, we also carried

FIGURE 2 | (A) Structural MRI (sMRI) of hippocampal subfield and (B) amygdala nuclei volume.
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out an analysis over various threshold values to examine the
excellent threshold value (Fornito et al., 2010). To create efficient
network parameters statistically fascinating variations in network
parameters among different classification groups on various
sparsity levels were measured.

Brain Network Feature Extraction
Entire brain networks parameters were calculated and evaluated
utilizing the Matlab 2019a6 program and matlab_bgl7. All graph
matrices were evaluated using the undirected connectivity matrix
on 0.01–0.027 Hz frequency band. To retrieve dynamic features
and eliminate largely redundant matrix features, we computed
five global graph parameters for the undirected graphs. These
five global graph parameters are as follows: local efficiency, global
efficiency, clustering coefficient, characteristic path length, and
small-worldness (Tan et al., 2019). In the feature extraction
section, we extracted brain network features for 270 nodal
features of the brain network, in which ND, NL, and BC were
calculated for further study and for the classification framework.
In short, for the obtained node i, ND, NL, and BC were defined
as follows:

Li =

∑
j6=i∈V Lij

(V − 1)
(1)

Ki =
∑
j∈V

bij (2)

Bi =
∑

i6=j 6=m∈V

Sjm(i)
Sjm

(3)

where Lij represents the minimal number of edges among nodes
i and j, V represents the range of the graph, bij represents the
network structure among nodes i and j, Sjm represents producing
the shortest path length number among nodes m and j, Sjm(i)
where indicated the shortest path number over the node i among
nodes m and j. Possibly, path length Li calculates the pace of the
message that is carried via a specific node, each node degree Ki
corresponds to the connected link number to the particular node;
the larger the value of bi, the higher the meaning of node i to
the communication link within the networks, which reflect the
information interaction level in the brain network.

Voxel-Wise Features Extraction
In this study, we illustrated voxel-base feature estimation from rs-
fMR utilizing the REST toolbox pipeline. These voxel features can
be classified into DMN (ReHo, fALFF, and ALFF), DC, and SN.
We utilized the ReHo voxel to examine the regional brain activity
amid the phase of the brain at resting. The Kendall’s Coefficient
of Concordance (KCC) approach was utilized to calculate the
voxel-wise features. Individual ReHo maps were obtained from
all brain voxels for individual subjects. A higher ReHo value was
obtained for the voxel consisting of its closest neighbors, and
brain voxel features were obtained for a larger regional coherence
within a cluster. Larger analyses in recent literature indicated

6https://www.mathworks.com
7https://github.com/dgleich/matlab_bgl

the potentiality of ReHo in recent clinical practice (Zang et al.,
2004; He et al., 2007). Similarly, the ALFF measure estimates
the regional spontaneous activities of the brain, and fALFF is an
improved version of ALFF. The time series were transformed and
filtered to the frequency region utilizing a fast Fourier transform
(FFT) followed by its corresponding power range. The fALFF is a
modified domain of ALFF, which is characterized by the average
amplitude ratio within the low-frequency range. A large body of
literature on the brain has indicated the unusualness level of the
particular signal in brain regions for a disease class as related
to a control class while employing statistical univariate tests
(Arbabshirani et al., 2017). Recently, many works of literature
have utilized t-tests to calculate descriptive biomarkers from
neuroimaging for machine learning (Chaves et al., 2009; Wee
et al., 2012). The main results of the statistical analysis tests are
generally carried out using p-values. We generated a diagnostic
feature estimation, that is, ReHo, fALFF, ALFF, and DC, among
two classification groups at the threshold value of p < 0.05.
The correlation cluster size on the defined threshold (p = 0.05)
associated with the respective voxel p-value was determined by
Monte–Carlo simulations using the AlphaSim tool embedded in
REST to calculate the cluster value and the cluster size. Similarly,
for SN, we utilized a well-validated region of interest (ROI)
that included 12 posterior and 7 anterior SN nodes accessible
at8 and were extracted using independent component analysis
(Shirer et al., 2012).

Features Selection Techniques
The number of features per subject, as in the neuroimaging
study, is extremely high in comparison to the number of
patients, a phenomenon known as the curse of dimensionality.
Furthermore, dealing with a large number of features might
be problematic because of the computational limitations of
dealing with high-dimensional data, which can lead to overfitting.
Feature selection is a step that comes before the classification
problem and helps to minimize the dimensionality of a feature
by choosing the right features and leaving out the wrong ones.
This stage reduces the computing time for the training and testing
datasets, speeding up the classification process and improving
classification accuracy. To remove duplication and dependence,
we first normalized the extracted features using the standard
scalar function from the Scikit-learn module (Pedregosa et al.,
2011), which modifies the dataset in such a manner that its
distribution has a mean of 0 and a unit variance of 1. Features
selection techniques utilized in this model are described below.

Least Absolute Shrinkage and Selection
Operation
The least absolute shrinkage and selection (LASSO) method
(Tibshirani, 1996) is a dynamic process and is utilized to select
the significant features set. This method is basically based on
regularization and feature elimination. The LASSO technique
helps to reduce the residual sum of squares present in the
analysis by ordinary least square regression (OLS), which places a
constraint on the absolute sum values of the design framework.

8http://nitrc.org/projects/bnv/
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LASSO measures model coefficients β by minimization of the
function below:

RSSLASSO(βi, β0)

= arg
β

min
[ n∑

i=1

(
yi − (βixi + β0)

2
+ α

k∑
j=1

|βj|

)]
(4)

where xj represent the data input at observation j and a vector
k, and n represent the observation sample. yj represent the
observation response at i. α is a user-defined non-negative
parameter for regularization that controls the penalty strength.
If α is largely sufficient, then parameters are compelled to be zero,
ultimately leading to generating only efficient features vector.
When α tends to zero, the model turn to OLS with the most
efficient features vector (Hanyu et al., 2010).

Support Vector Machine-Recursive
Feature Elimination
The support vector machine-recursive feature elimination (SVM-
RFE) method is basically a multivariate wrapper technique
based on the backward feature elimination technique, which
precisely adopts a model and eliminates the less relevant feature
vector till the specific number of relevant features is obtained.
The ranking principle for the SVM-RFE is identical to the
SVM technique. After this, the features that acquired the
lowest rank is eliminated because it has the lowest response
on evaluation, while the other feature vectors are selected
for the SVM model in another iteration. All the irrelevant
feature vectors were removed based on the repeated sequential
procedure. Entire feature vectors are graded according to
the elimination rank. A detailed explanation of the SVM-
RFE technique can be explored in a preceding article (Guyon
et al., 2002). In this study, after the implementation of SVM-
RFE, the highly informative training feature vectors were kept
which boosted cross-validated performance accuracy to train
the classifiers.

Joint Mutual Information
Mutual information (MI) can be applied to evaluate any arbitrary
relation among random variables in the information theory
(Kraskov et al., 2004). Truly, the MI among two arbitrary
variables, X and Y, is a calculation of the measure of knowledge
on Y given by X or, reversely, on X supplied by Y. If X and Y are
independent, that is, if X has no message about Y and vice versa,
then mutual information between them is zero. For two random
variables, X and Y, MI is calculated as

I(X;Y) = H(X)−H(X/Y) = H(Y)−H(Y/X)

= H(X) + H(Y)−H(X;Y) (5)

where H(.) is entropy, H(X/Y) and H(Y/X) represent
conditional entropies, respectively, and similarly, H(X;Y)

represent joint entropy for X and Y, which are calculated as

H(X) =
∫

x
PX(x) log PX(X)dx (6)

H(Y) = −
∫

y
PY(y) log PY(y)dy (7)

h(X;Y) = −
∫

x

∫
y

PX,Y(x, y) log PX,Y(x, y)dxdy (8)

where Px(x) and Py(y) represent marginal density value and
Px,y(X, y) defined the joint probability density value for X and
Y, correspondingly. The function which defines the marginal
density are:

PX(x) =
∫

y
PX,Y(x, y)dy (9)

PY(y) =
∫

x
PX,Y(x, y)dx (10)

By substituting Eqs. 6, 7, 8 in Eq.5, the MI equation will be

I(X;Y) =
∮

x

∫
y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
dxdy (11)

The discrete form of the equation can be represented by the
integration over summation in the date for all possible values.
Therefore, estimation of Px,y(x, y) is required to calculate the
Joint Mutual Information (JMI) between X and Y. The discrete
form of JMI is represented by the below equation.

I(X;Y) =
∑
x∈X

∑
r∈Y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(12)

when Fk is one of the traits in a set of traits {F1, F2, . . . , Fk}
and Y is an outcome that can be assumed by the trait, and the
MI technique can pick the efficient trait. The process usually
treats the trait as an independent random variable and is sort in a
descending order based on their mutual information according to
the obtained value Y, which selects the top n number of features.
The process is conditioned by parsimonious and proper feature
vectors that should (i) not be highly correlated among them and
(ii) be individually relevant. JMI is shared among {F1, F2, . . . , Fk}
and Y is highlighted at Eq. 13, where Fk and Y represent the
elements of Fk and Y, correspondingly.

I(F1, F2, . . . , Fk) =
∑

f1∈F1

∑
f2∈F2

. . .
∑
fk∈Fk

∑
y∈Y

P(f1, f2, . . . , fk, y) log
P(f1, f2, . . . , fk, y)

P(f1, f2, . . . , fk)P(y)
(13)

A JMI feature elimination technique initializes from an empty
feature of trait, which iteratively calculates Fis and is added to
the empty set, creating the optimum increment measure in the
JMI among the feature vectors and the results. JMI is considered
to be a highly stable and a flexible feature reduction technique
amid all the information-theoretic feature elimination techniques
established until now.
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Random Forest Classifier
Random Forest is an ensemble learning approach, originally
developed by Breiman (2001) to address regression and
classification problems. The implementation of RF is based on the
parameters set up, among which is the number of features in each
branch and the number of trees. Previous studies noted that the
optimum results could be obtained by setting default parameters
(Immitzer et al., 2012; Zhang and Roy, 2017). However, studies
conducted by Liaw and Wiener (2002) suggested that the larger
the number of trees the more stable will the results be. In another
study, Breiman (2001) noted that using more number of trees
may not be beneficial for performance, but there is also no
negative effect for the model. In another piece of literature, Feng
et al. (2015) analyzed that, with the number of trees = 200, RF
could reach precise results. Regarding the split parameter, many
previous studies utilized the default parameter value √p; where
p represented the number of predictor variables (Duro et al.,
2012). However, in our model, we set a number of trees = 100,
200, 500, and 1000; split = 1:10 with a step size 1 to obtain the
optimal performance. RF classifiers were implemented using the
Scikit-learn Python library (Pedregosa et al., 2011).

Support Vector Machine Classifier
As a supervised learning technique, SVM (Cortes and Vapnik,
1995) divides the classification group by finding the best
hyperplane. By training data, SVM is trained in a given features
space. Thereafter, that test dataset is classified according to its
arrangement in the n-dimensional vector field. SVM has been
practiced in numerous neuroimaging fields (Zhang et al., 2011;
Collij et al., 2016) and is recognized as one of the highly
robust machine learning tools in the area of neuroscience.
Mathematically, in a 2D field, a linearly separable features vector
can be separated by a line. A line equation is defined by y =
ax + b. By replacing x with x1 and y with x2, the equation will
become a(x1− x2) + b = 0. If we stipulate x = (x1, x2) and
w = (a− 1), we get w.x + b = 0, which gives the hyperplane
equation. The hyperplane equation with a linearly separable
output has the following form:

f (y) = zTφ .(y) + b (14)

where y represents the input data, zT represent a hyperplane,
and φ(y) represents a function that map vector y into a high
dimension. The elements z and b are appropriately scaled by the
equal value, and the selected hyperplane in equation (14) remains
stable. Furthermore, hyperplane can be making an exclusive pair
of (z,b), which is represented by below formulation:

min |zTφ .(yi) + b| = 1, i = 1, . . . ,N, (15)

where y1, y2, . . . , yN represent the training vector. The
hyperplane in equation (15) are recognized as canonical
hyperplanes. The hyperplane is represented as below:

zTφ .(x) + b = 0, which is same as

zTφ .(y) = 0(which has more dimensions) (16)

For a feature x that does not fit the obtained hyperplane, the
equation below represents it (Cortes and Vapnik, 1995):

zTφ .(x) + b = ± s||z|| (17)

where s is the measure of vector x to the defined hyperplane.
Therefore, the output vector fy from SVM is exactly equivalent
to the distance sx and z vector for the obtained hyperplane.
Furthermore, in this study, we have utilized the kernel-support
vector method, which is good to deal with the non-linear issue
with the help of the linear classification method and which
engages in swapping of the linearly un-classifiable vector into
linearly classifiable. The concept inside this idea is a linearly
unclassifiable vector that might be linearly classifiable in high
dimensions. The kernel is mathematically defined as,

K(x, y) = (x, y)d (18)

where x and y represent features in the input and d represents the
kernel element. Gaussian radial bias functions are represented by:

K(x, y) = exp
(
−
||x− y||2

2σ2

)
(19)

where x and y represent two samples input, which are vectors
in input ||x− y||2 that can be represented as Euclidean distance
in the square form among two features. σ represents kernel
elements. Sigmoid function derived from the neural networks
was used for activation, and the bipolar sigmoid function is
utilized often for an artificial neuron, which is represented by

K(x, y) = tanh(∝ xTy + c) (20)

where x and y represent features in the input and ∝, c represents
the kernel elements.

The SVM classifier was implemented by utilizing the Scikit-
learn library (Pedregosa et al., 2011). The Scikit-learn library
internally utilized LIBSVM (Chang and Lin, 2011) to handle
all calculations. To obtain optimal classification accuracy,
hyperparameters; cost c and γ (kernel width) of SVM must be
tuned. With the aid of grid search and a 10-fold CV, these tuned
optimal hypermeter values are automatically selected from the
specified range of c = 1 to 9 and γ = 1e−4 to 1. CV is a
popular data shuffling and resampling technique for evaluating
the generalization idea for the design of a predictive model and
for preventing the underfitting or overfitting of the classifiers. CV
is widely utilized in predictive modalities such as classification
problems. In such types of issue, a framework is fitted with a
known dataset, which is known as the training set, and a set of
unknown samples against that model is evaluated, as the test set.
The purpose is to have a testing sample for the model in the
training stage and to then demonstrate how the process adopts
various unknown datasets. Each phase of the CV engages the
partition of the data samples into independent datasets, followed
by an analysis of an individual sample. Subsequently, the study
is validated on new independent subsets called testing samples.
To lessen variability, numerous phases of CV are carried out
by several partitions, after which an average of the results is
considered. CV is a powerful procedure for evaluating model
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FIGURE 3 | The data splitting stage is depicted in a diagram.

performance. Moreover, the data split features were applied in
our model. The training data is used to train the machine learning
(ML) classifier for subject group prediction across the provided
features. After that, the classifier will be fine-tuned and tested
on holdout data. To begin, model training entails a procedure
in which ML passes the trained data via a process in which
the classifier uncovers the train data patterns. As a result, the
parameters are passed through to the target variables. As stated,
our goal was to develop an ML classifier for the specific purpose
of accurately identifying patients with AD and HC. We used
supervised and ensemble learning models to propose an efficient
ML classifier in the classification of subjects with AD to predict
the AD patient status given a collection of independent variables.
For crossvalidation purposes, we partitioned the dataset into
three subgroups using this procedure. One set (test data) is
used to forecast model performance, while the other two sets
(training and validation) are used to evaluate model performance
by training against new data. We randomly divided the entire
dataset into a 70:30 ratio after data preparation, with 70% utilized
for training and 30% used for testing. This will allow the system to
generate fresh combinations each time the model is run, allowing
for the most accurate prediction. The training dataset was divided
into two subsets for training and validation after model training.
Figure 3 is a brief explanation of each model.

In this study, accuracy, specificity, sensitivity, F1-score, and
Receiver Operating Characteristic (ROC) curves were used for
performing validation of the classifiers. We also calculated
Cohen’s kappa values for each class group, which represent
interrater reliability between two classes (Cohen, 1960). Kappa
calculates the proportion of information scores in a table’s
principal diagonal and then adjusts them for the amount of
agreement that might be expected by chance alone. For two
raters, the formula is K = p0−pe

1−pe
, where is the relative observed

agreement between raters and is the hypothetical probability of
chance agreement. In this method, we referred to HC as negative
samples, patients with AD as positive samples, TN represents the
number of negative sample sets that are correctly classified, total
positive (TP) denotes the number of positive samples correctly
categorized, false positive (FP) denotes the portion of negative
dataset classified as positive, and false-negative (FN) denotes the
number of positive datasets classified as negative samples. The

accuracy, specificity, precision, and area under the curve are
defined as follows:

accuracy =
TP + TN

TP + FP + FN + TN
(21)

specificity =
TN

TN + FP
(22)

sensitivity =
TP

TP + FN
(23)

The ROC curve, which is a curve obtained by plotting the TP
rate versus the FP rate, can calculate the diagnostic capability of
a binary classifier. The area under the ROC curve is proportional
to the classifier performance.

RESULTS

Findings From a Demographic and
Clinical Approach
In AD over HC, AD over MCI, MCI over HC, and MCIs over
MCIc, there was no significant age difference between groups.
In all group combinations, however, there was a significant
difference in MMSE (P > 0.05) and CDR (P > 0.05). AD has
a male-predominant gender percentage while HC has a female-
predominant gender percentage, whereas MCIs and MCIc have
a female- and male-predominance percentage, respectively. Male
dominance in AD is 58.73%, while female dominance in HC is
51.47%; whereas female and male dominance in MCIs and MCIc
is 59.45 and 60%, respectively. These variables are described and
analyzed in-depth in Table 1.

Highly Sensitive Brain Network Features
This section presents the top brain network features obtained by
the JMI algorithm. Details about the selected network feature
number and location of the AAL brain regions with their
connectivity in the circular graph are presented in Figure 4 below.
The feature reduction using the JMI method preserves all of
the following attributes: betweenness centrality (BC), nodal path
length (NL), and nodal degree (ND) features. We noted that, for
all group classification NL trait contributed more as compared
to the other two network features. The features selected show
roughly similar features for the AD vs. HC and the MCIs vs. MCIc
group and include the right precentral gyrus (PreCG.R), the
left middle temporal gyrus (MTG.L), the left superior temporal
gyrus (STG.L), the hippocampus (HIP.L and R), the amygdala
left (AMYG.L), and the cuneal cortex right (CUN.R). For AD
vs. MCI classification, the hippocampus (HIP.L and R), the
cuneal cortex left (CUN.L), and the amygdala were selected
along with other brain regions; similarly, for the HC vs. MCI
group classification, the left middle temporal gyrus (MTG.L), the
hippocampus (HIP.L and R), and the amygdala (AMYG.L and R)
were selected along with other brain regions as shown in Figure 4.
From this, we can conclude that the most affected brain region
for all group classification analysis was mainly located on the
middle temporal gyrus, the hippocampus, and the amygdala area
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FIGURE 4 | The location and networks of cortical regions with the highly discriminative attribute of top brain regions (BrainNet Viewer)8 and their corresponding
circular connectivity (circularGraph) (http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph): (A) Alzheimer’s disease (AD) vs. healthy control
(HC) group, (B) AD vs. mild cognitive impairment (MCI) group, (C) HC vs. MCI group, (D) stable MCI (MCIs) vs. converted MCI (MCIc) group.

FIGURE 5 | An univariate statistical two-sample test on region of homogeneity (ReHo) voxel maps among two classification groups (A) AD vs. HC (B) MCIs vs.
MCIc. The threshold value was set to p < 0.05. The hot and cold bar represent negative and positive changes.

followed by other brain regions. The location and brain region of
these brain features are presented in Supplementary Tables 1–4.

Voxel-Based Sensitive Features
The region showing significant alteration in a univariate t-test
are vital in achieving highly accurate differential prediction of
the AD, MCI, and HC groups. For the optimal classification
accuracy, previous studies (Arbabshirani et al., 2017) used the
univariate statistical t-test to compute the group difference
in the voxel-based analysis in the machine learning method.
The main outcomes of the calculation are relied on statistical
tests generally represented by p-values. Afterward, the excellent
p-value only preserves the effective brain regions. Using the
t-test of different group analyses, we created an analytically
significant mask that preserved only the significant voxels
difference between the two groups at p < 0.05 for ReHo, ALFF,

and fALFF obtained from rs-fMR images. Consequently, adjusted
individual voxel p-values of.05 were determined. Afterward, for
SN, we utilized a well-validated region of interest (ROI) that
included 12 posterior and 7 anterior SN nodes accessible at9 and
were extracted using independent component analysis (Shirer
et al., 2012), as presented in Supplementary Figure 5 and
Supplementary Table 5. Similarly, to do a full-brain study of
the areas impacted by AD and MCI, we utilized a frequently
used graph-based metric of network architecture called degree
centrality (DC). Individual network centrality maps were created
in a voxel-by-voxel manner within the study mask. First, a
voxel-based whole-brain correlation analysis was performed on
the preprocessed functional runs. A correlation matrix was
created by correlating the time course of each voxel inside

9http://findlab.stanford.edu/research.html
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FIGURE 6 | Univariate t-test difference maps between two classification groups, AD vs. HC, of four voxel maps.

FIGURE 7 | Univariate t-test difference maps between two classification groups MCIs vs. MCIc, of four voxel maps.

the gray matter mask from each participant with the time
course of every other voxel. The DC was calculated as the
sum of the weights of the significant weighted connections for

each voxel using an undirected adjacency matrix created by
thresholding the correlation at r > 0.25 (Zuo et al., 2012).
Finally, the DC on a voxel-by-voxel basis is calculated at the
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individual level. The highly significant brain regions obtained
on the voxel-based analysis for the proposed method are
shown in Figures 5–7 and in Supplementary Figures 6, 7. We
have also presented the information of peak regions and their
corresponding MNI co-ordinate in Supplementary Tables 6, 9.
The most discriminative patterns obtained on the process and all
information from regional coherence measures were calculated.
This can suggest that various parts of the brain region go through
various functional alterations because of MCI and Alzheimer’s.
Therefore, to accomplish optimal diagnostic accuracy of the
classification framework, it should cover the complementary
information about altered brain patterns. One major discovery
of this framework is that the effective and important regional
voxel-based features can complement the brain network features
obtained from the rs-fMRI data and structural features from
sMRI.

Classification Results
In this section, we evaluated the diagnostic performance of the
purposed method on sMRI of the hippocampus, the amygdala
features along with brain network features, and the voxel-based
features of rs-fMRI and have combined all of them with that
of SVM and RF classifiers for respective binary classification.
We implemented and analyzed the three features obtained from
sMRI and rs-fMRI images separately as well as combined. We
used the hippocampus and the amygdala volume, as well as voxel
features, as complementary features for the brain network, which
help to improve the classification accuracy for AD and MCI
diagnosis. The combined procedure shows great potential for the
classification task with higher AUC, accuracy, better sensitivity,
and precision. For brain network features, we measured the
different features such as ND, NL, and BC. Through a series of
threshold values in the cost, 5–25% of best and stable results
were utilized for diagnostic classification of each group, which is
presented in Supplementary Figures 1–4. Similarly, for voxel-
based features, we calculated the five voxel features, namely
ReHo, ALFF, fALFF, DC, and SN: group difference univariate
t-test. We evaluated our feature reduction and classification
algorithm on feature vectors using a 10-fold CV. First, we
partition the data into 10 equal-sized subsets (folds) which
contain 90% subset for training and the remaining 10% of the
test subjects. Then, features selection was carried out on the
training subsets. We implemented the distinct features selection
algorithm to select the important feature sets to optimize
the classifier performance. Based on the obtained top selected
features set, SVM and RF classifiers were trained. Because each
feature had a distinct scale, we linearly ascended each training
feature to simulate to a range between 0 and 1 in our case; the
same scaling procedure was then used on the test dataset. In
our scenario, the RBF kernel outperforms other kernels because
of the modest number of features used. For each test and
training subset, we implemented independent feature selection
to escape the feature selection bias amid a 10-fold CV. We
measured cross-validated accuracy for classifiers on a given
number of feature sets and plotted the numbers of selected
features against the accuracy as shown in Figure 8 for each group
classification.

Finally, we evaluated the AUC as shown in Figure 9,
and accuracy, sensitivity, specificity, F1-score, and Cohen’s
Kappa in Figure 10 for individual and combined feature
set and different features selection algorithm as presented in
Tables 2–5. Table 2 presents the classification of AD against
HC. In this study, we compared the performance of different
features selection methods on the different feature sets with
SVM and RF classifiers. The Joint Mutual Information (JMI)
feature reduction technique with SVM classifiers outperforms
all other techniques contemplated with the highest AUC and
accuracy. For AD vs. HC diagnostic classification, the integrated
(Hippocampal + Amygdala + BN + Voxel) feature vectors
performed well in comparison with individual feature set
with 97.03% AUC, 95.87% accuracy, 97.35% sensitivity, and
95.95% specificity along with 96.33% F1-score and.913 Cohen’s
Kappa index, respectively. We did not notice the significant
classification difference between the SVM-RFE, and LASSO
features selection algorithm for AD vs. HC. In comparison
with the RF classifier, there was 1–6% better performance in
terms of accuracy with SVM for AD vs. HC classification
on different features vectors, but we noticed slightly better
specificity for combined features with LASSO for RF classifier.
For voxel features with JMI feature selection, we noticed
the same pattern for RF classifiers that perform equally with
SVM classifiers in terms of accuracy. For hippocampal and
amygdala volume, RF classifiers with SVM-RFE features selection
show good performance in terms of F1-score. Similarly, for
the classification performance of AD vs. MCI as shown in
Table 3, we obtained the 94.03% AUC, 92.45% accuracy,
95.98% sensitivity along with 90.45% specificity, 93.75% F1-
score, and.9105 of Cohen’s Kappa index, respectively. For HC
vs. MCI classification as shown in Table 4, we achieved the
highest classification accuracy on the JMI feature selection
method. Although there was not much difference between the
individual features method, JMI significantly improved for the
combination of the hippocampal, amygdala, brain network, and
voxel-based features sets with 92.06% AUC, 90.35% accuracy,
and 94.34% sensitivity along with 92.11% specificity, 94.13%
F1-score, and.9035 of Cohen’s Kappa score. More importantly,
from the results presented in Tables 2–5, brain network features
perform well as compared to the hippocampal, amygdala (sMRI),
and voxel-based (rs-fMRI) features for individual features in
most of the cases.

Similarly, the classification performance for the less
commonly reported group of MCIs vs. MCIc using different
features selection methods is listed in Table 5. Like the previous
pattern, the highest diagnostic classification results in terms
of AUC, accuracy, specificity, and sensitivity were calculated
with the JMI feature selection method as compared to other
features selection technique. However, for MCIs vs. MCIc
classification, there was no significant difference between the
performance of SVM-RFE and the LASSO feature selection as
compared to other different group classifications as shown in
Tables 2–5. For the MCIs vs. MCIc classification, we obtained
the 91.08% AUC, 88.03% accuracy, 94.85% sensitivity, and
89.71% specificity along with 93.17% of F1-score, and.8831
of Cohen’s Kappa index, respectively, for combined feature
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FIGURE 8 | An illustration of the performance of three feature selection algorithms for classifying four different groups on combined features vectors (A) AD vs. HC,
(B) AD vs. MCI, (C) HC vs. MCI, and (D) MCIs vs. MCIc. The x-axis represents the number of selected features, while the y-axis represents the classification
accuracy.

set, i.e., hippocampal and amygdala features (sMRI) as well
as BN and Voxel (rs-fMRI) features. From Table 5 for the
MCIs vs. MCIc classification, SVM-RFE and LASSO feature
selection method also shows the potential to compete the JMI
feature selection with 90.19% and 89.75% AUC along with
85.32% and 85.11% accuracy, respectively. We also observed
that accuracy is significantly increased while classifying MCIs
vs. MCIs by integrating hippocampal and amygdala volume
of sMRI along with brain networks and voxel features of
rs-fMRI. Overall, we noticed that, as compared with RF
classifiers, SVM classifiers perform better for almost all feature
selection techniques and all three different kinds of feature
sets. This may be due to lesser training data than the number
of feature set. SVM is better than RF when there were a
large number of features and lesser training data and RF
is better for multiclass problems, while SVM is better for
binary classification.

From all these reported results, it has clear evidence that
the utilization of JMI as features selection algorithm for MCI
and AD against HC classification and conversion prediction
of MCI shows the great potentiality using SVM classifiers
with a combination of structural features (hippocampal and
amygdala), brain networks, and voxel-based (rs-fMRI) features.
More importantly, the AUC curve as illustrated in Figure 9
below for all classification groups shows that the proposed model
was quite stable.

DISCUSSION

Alzheimer’s disease can be detected earlier, which can aid with
therapy and avoid brain tissue damage. For the diagnosis of
AD, researchers have used a variety of statistical and machine
learning models. In clinical research, the MMSE score, MRI
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FIGURE 9 | Receiver operating characteristics (ROC) curve for (A) the AD vs. HC group, (B) the AD vs. MCI group, (C) the HC vs. MCI group, and (D) the MCIs vs.
MCIc group for combined features vectors: Hippocampus, amygdala, brain network (BN), and voxel (Combined).

analysis (normalized whole-brain volume, hippocampal volume),
biomarkers based on CSF, such as amyloid–42, and combined
biomarkers have shown a great potentiality for AD diagnosis
(van Maurik et al., 2017). The closeness between AD MRI
data and normal healthy MRI data of older persons makes
detection of AD difficult. A recent study suggested that decreased
hippocampus subfield volumes have been commonly observed
in dementia disorders such as AD and dementia with Lewy
bodies (DLB) (Delli Pizzi et al., 2016; Mak et al., 2016, 2017).
The volumes of the CA1, CA2-3, CA4, DG, and total subiculum
(subiculum, presubiculum, and parasubiculum) are reduced in
AD, according to one study (Mak et al., 2017). Similarly, the

rs-fMRI data not only involve peculiar numerical features but
also present rich dynamic temporal information. Several works
of literature that relied on rs-fMR have been tested and verified
for the diagnostic classification of MCI and Alzheimer’s from
the healthy population. However, those previous studies either
focus only on structural features, the graph theory approach,
or the voxel-based approach and lose the full potentiality of
combing structural features (hippocampal-amygdala) and brain
network with voxel-based features. Therefore, to examine the full
possibility of rs-fMRI and sMRI on AD diagnosis, we presented
insights into the performance for diagnostic classification of all
four binary classification groups by combining the hippocampus
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FIGURE 10 | The Cohen’s Kappa index for (A) AD vs. HC group, (B) AD vs. MCI group, (C) HC vs. MCI group, and (D) MCIs vs. MCIc group for individual and
combined feature set and different feature selection algorithm.

TABLE 2 | A 10-fold cross-validated binary classification performance for Alzheimer’s disease (AD) vs. healthy control (HC) groups using support vector machine (SVM)
and Random Forest (RF) classifiers.

Performance Matrix

SVM RF

Feature selection method Features AUC ACC SEN SPE F1 Cohen’s Kappa ACC SEN SPE F1 Cohen’s Kappa

SVM-RFE HV + Amygdala 87.12 84.51 91.13 85.07 85.45 0.8501 78.03 86.12 86.33 87.13 0.8201

BN 90.42 90.13 81.04 85.12 84.13 0.8713 88.47 87.35 90.07 82.15 0.7972

Voxel 92.17 88.97 90.71 95.09 88.46 0.8055 84.78 92.01 86.42 84.13 0.8013

Combined 93.14 92.98 95.03 92.71 83.78 0.9131 91.05 91.23 88.88 82.23 0.8430

LASSO HV + Amygdala 85.99 82.75 82.03 87.59 82.20 0.8538 80.05 75.43 83.11 84.05 0.7851

BN 90.07 88.95 95.04 84.45 85.77 0.8512 87.74 86.71 91.08 87.71 0.8903

Voxel 91.75 88.13 92.14 93.25 90.65 0.8531 87.31 90.45 87.72 76.11 0.8113

Combined 95.95 94.13 93.53 95.51 84.38 0.9345 90.46 93.04 84.22 84.11 0.9012

JMI HV + Amygdala 89.45 85.33 89.05 84.83 86.15 0.8791 80.85 87.59 82.2 85.38 0.8601

BN 93.95 92.75 93.03 89.08 92.45 0.8583 87.75 87.47 90.35 91.37 0.8614

Voxel 94.41 92.46 95.43 88.81 91.15 0.9010 92.51 95.00 85.87 93.15 0.9071

Combined 97.03 95.87 97.35 95.95 96.33 0.9130 93.23 95.31 94.93 92.37 0.8935

subfield and the amygdala nuclei volume from sMRI along with
brain network and voxels-based features (ReHo, fALFF, ALFF,
DC, and SN) from rs-fMRI. Besides this, we also proposed the
different feature selection algorithms for the classification of
AD vs. HC, AD vs. MCI, HC vs. MCI, and the less commonly
reported group, MCIs vs. MCIc. Our experimental outcome

indicated that each feature set is important to achieving good
classification performance.

Several recent works of literature have analyzed the
neuroimaging method for discriminative classification of
AD, with the target on patients with MCI, who may or may
not convert to Alzheimer’s, and identifying an individual
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TABLE 3 | A 10-fold cross-validated binary classification performance for AD vs. mild cognitive impairment (MCI) groups using SVM and RF classifiers.

Performance Matrix

SVM RF

Feature selection method Features AUC ACC SEN SPE F1 Cohen’s Kappa ACC SEN SPE F1 Cohen’s Kappa

SVM-RFE HV + Amygdala 85.27 78.14 87.91 84.73 82.75 0.855 77.45 83.18 84.17 84.18 0.8021

BN 91.42 84.85 95.12 87.45 88.13 0.8342 80.25 90.43 84.56 77.45 0.8178

Voxel 85.32 82.83 84.51 93.13 83.52 0.7847 81.75 92.53 84.98 81.78 0.7380

Combined 93.71 87.18 92.45 90.14 91.75 0.8501 86.45 88.37 84.73 82.51 0.8703

LASSO HV + Amygdala 84.9 80.83 93.11 87.04 84.19 0.8503 78.51 82.58 78.95 84.45 0.7913

BN 90.34 88.74 94.45 90.87 87.14 0.8305 85.91 90.98 87.42 83.31 0.8033

Voxel 86.73 85.24 95.01 88.11 85.46 0.8013 85.41 91.21 84.63 78.98 0.7818

Combined 93.91 90.45 94.46 91.71 89.58 0.8401 87.75 92.13 90.03 85.54 0.8135

JMI HV + Amygdala 82.75 81.27 87.72 81.27 88.35 0.8587 79.31 83.24 81.18 85.03 0.8035

BN 91.73 91.32 94.43 87.17 88.75 0.8309 86.08 87.53 88.14 84.23 0.8118

Voxel 92.08 88.01 93.13 89.57 91.33 0.8703 87.89 93.58 89.13 85.85 0.8273

Combined 94.03 92.45 95.98 90.45 93.75 0.9105 90.75 95.15 87.73 91.03 0.8831

TABLE 4 | A 10-fold cross-validated binary classification performance for HC vs. MCI using SVM and RF classifiers.

Performance Matrix

SVM RF

Feature selection method Features AUC ACC SEN SPE F1 Cohen’s Kappa ACC SEN SPE F1 Cohen’s Kappa

SVM-RFE HV + Amygdala 82.85 77.32 90.54 84.13 84.71 0.8010 76.53 86.15 90.23 78.97 0.8501

BN 86.01 85.42 84.12 81.47 84.13 0.8210 78.56 84.45 88.11 78.47 0.8203

Voxel 87.31 86.53 93.12 87.89 85.45 0.7809 84.01 90.35 88.75 80.10 0.8283

Combined 91.21 85.21 93.45 92.11 88.79 0.8451 84.36 87.84 85.01 79.45 0.8401

LASSO HV + Amygdala 84.92 76.95 87.3 82.08 82.83 0.8045 75.03 85.91 90.07 87.18 0.8531

BN 87.42 82.15 88.63 87.45 84.88 0.8331 81.52 87.38 82.88 85.45 0.7933

Voxel 87.13 80.45 86.85 91.12 86.91 0.7903 78.96 88.45 86.23 76.14 0.8311

Combined 90.03 84.74 85.77 91.03 90.11 0.8815 82.41 87.15 82.95 80.75 0.8220

JMI HV + Amygdala 83.57 79.45 88.45 79.85 83.50 0.8201 77.13 78.95 85.52 85.15 0.8130

BN 91.83 86.15 92.09 94.15 87.71 0.8305 83.87 91.54 84.35 81.33 0.8015

Voxel 90.57 86.43 85.15 86.01 91.23 0.8917 84.25 88.32 83.03 89.77 0.8738

Combined 92.06 90.35 94.34 92.11 94.13 0.9035 85.15 91.12 85.31 84.95 0.8805

TABLE 5 | A 10-fold cross-validated binary classification performance for stable MCI (MCIs) vs. converted MCI (MCIc) groups using SVM and RF classifiers.

Performance Matrix

SVM RF

Feature selection method Features AUC ACC SEN SPE F1 Cohen’s Kappa ACC SEN SPE F1 Cohen’s Kappa

SVM-RFE HV + Amygdala 83.35 76.43 82.75 78.41 82.14 0.8310 75.02 80.37 85.3 79.41 0.8129

BN 88.32 84.46 90.11 85.27 90.17 0.8375 80.45 87.52 91.15 80.14 0.8175

Voxel 84.54 83.25 91.95 88.11 83.52 0.8805 80.34 86.33 80.17 84.75 0.8835

Combined 90.19 85.32 92.87 88.03 88.73 0.8231 82.13 84.85 87.85 87.02 0.8750

LASSO HV + Amygdala 85.23 75.10 86.35 83.57 82.17 0.7803 74.91 74.74 81.50 77.13 0.7512

BN 86.37 80.98 92.84 86.38 84.56 0.8415 76.89 84.77 80.11 77.91 0.8240

Voxel 84.33 84.45 90.37 87.33 89.47 0.8170 82.31 86.13 84.71 79.79 0.8430

Combined 89.75 85.11 92.37 90.15 85.12 0.7897 83.39 91.18 84.27 84.18 0.8203

JMI HV + Amygdala 85.52 78.45 88.5 84.05 83.14 0.7888 77.54 79.57 82.35 79.09 0.7545

BN 88.73 84.38 94.17 91.13 90.03 0.8055 82.45 87.31 81.41 90.93 0.7905

Voxel 87.97 85.14 92.77 87.53 91.11 0.8730 84.24 90.34 82.59 88.15 0.9015

Combined 91.08 88.03 94.85 89.71 93.17 0.8831 85.31 92.17 87.15 90.57 0.8733

AUC, area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; SVM, support vector machine; RF, random forest; SVM-RFE, SVM recursive feature
elimination; LASSO, least absolute shrinkage and selection operation; JMI, joint mutual information; HV, hippocampus volume; BN, brain networks).
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with Alzheimer’s from HC. However, it is hard to do a direct
comparison with the existing state-of-art methods due to
the majority of works of literature utilizing different datasets
and classification methods, which both significantly affected
the performance accuracy. With the combination of different
feature selections with different classifiers for AD vs. HC and
MCIs vs. MCIc, the binary classification of previous works
of literature has reported the accuracy of different ranges as
shown in Tables 6, 7. These works of literature utilized the
ADNI database to evaluate their proposed method, and we
can clearly see that the classification accuracy was influenced
by the number of subjects, and the accuracy decreased as the
number of subjects increased. As reported in the Results section,
the highest classification accuracy for AD vs. HC and MCIs
vs. MCIc obtained in this study is 95.87 and 88.03%, using
the combination of the features with JMI feature selection,
which is visualized in Figure 11. If we compare the obtained
results for AD vs. HC and MCIs vs. MCIc classification; our
framework outperforms the current state-of-art method. The
majority of the studies, including Khazaee et al. (2015) and
Lama and Kwon (2021), have utilized a limited number of
datasets because of the limited number of fMRI data availability
in the ADNI data bank. For MCIs vs. MCIc, the accuracy of
prior approaches (Khazaee et al., 2015; Zhang et al., 2021)
for constructing brain networks was lower than that of the
current study since they solely analyzed functional aspects. Only
Hojjati et al. (2017) classified diseases using the rs-fMRI graph
theory and the machine learning technique (mRMR, FS) with
a 91.4% classification accuracy. However, the sample size (of
only 18 people) was insufficient, and the result was not generally
representative. In this study, we used rs-fMRI and sMRI features
to perform binary classifications and found that combining
structural and functional MRI data improved classification
performance. In our proposed framework, we found that
combined sMRI (hippocampal subfield and amygdala nuclei
volume) and rs-fMRI (brain networks and voxel) outperformed

a single sMRI or rs-fMRI model for two-group classifications
(MCIs and MCIc) with improvement in accuracy (Ardekani
et al., 2017; Zhang et al., 2021) as shown in Table 7. As a
result, in the current work, we proposed to combine sMRI
and rs-fMRI for disease classification. Schouten et al. used
sMRI and fMRI to differentiate 16 patients with AD from 22
normal controls. They discovered that integrating features
from two modalities increases classification performance, and
they attained an accuracy of 89.5% in AD vs. HC classification
(Schouten et al., 2016). All the state-of-art studies presented
here analyzed and performed the classification task and made
a conclusion. Furthermore, we also carried out our proposed
method using ADNI dataset with a larger number of individuals
as compared to existing works of literature with cross-validation.
It was challenging to identify MCIc subjects since we utilized
baseline sMRI and rs-fMRI images in these participants and
they transitioned to AD 6 to 36 months later. They exhibited
heterogeneity in their conversion time to AD, ranging from
6 to 36 months. Patients with MCIc who converted to AD
over a longer period of time (e.g., 36 months) may have a
comparable brain network and structure at baseline as compared
to patients with MCIs who did not convert to AD. The brain
networks and structures of patients with MCIc who progressed
to AD in a shorter period (e.g., at 6 months) may on the
other hand be comparable to those of patients with AD. In
addition, individuals with MCIc were the only unstable group
of patients that progressed from MCI to AD over the 36-month
follow-up period. In fact, for at least 36 months, patients in
the MCIs, AD, and HC groups remained stable and did not
transition to another group. Furthermore, we noticed instability
in patients with MCIc, as some of them converted to AD and
then returned to MCI after 36 months. Unlike earlier research,
our study examined not only the conversion sensitivity of the
two groups of patients MCIs/MCIc but also analyzed the brain
regions of other patient groups. The highly responsive brain
regions selected from the two groups are listed in Figure 4 and

TABLE 6 | Performance comparison of AD vs. HC with state-of-the-art methods.

References Cohort Features Classifier Accuracy AUC

de Vos et al., 2018 AD/HC(77/173) FC matrices, FC dynamics, ALFF Group Lasso LR – 85%

Khazaee et al., 2015 AD/HC (34/45) Graph measures Naïve Bayes 93.30% –

Lama and Kwon, 2021 AD/HC (31/31) Brain Network LSVM 90.63% N/A

Our method AD/HC (33/35) sMRI, Brain Network and Voxel features of rs-fMRI SVM 96.95% 98

Bold value represents the results obtained form proposed method.

TABLE 7 | Performance comparison of MCIs vs. MCIc with state-of-the-art methods.

References Cohort Features Classifier Accuracy AUC

Moradi et al., 2015 sMCI/pMCI MRI, age and cognitive measure LDS 82.72% 0.902

(100/16)

Ardekani et al., 2017 sMCI/pMCI (78/86) Hippocampal volumetric (sMRI) RF 82.30% N/A

Hojjati et al., 2017 MCIc/MCInc (18/62) rs-fMRI, graph theory SVM 91.40% N/A

Zhang et al., 2021 MCIc/MCInc (30/35) rs-fMRI, sMRI, graph theory SVM 84.71% 0.88

Our method MCIs/MCIc (30/31) sMRI, Brain Network and Voxel features of rs-fMRI SVM 87.78% 93.8

Bold value represents the results obtained form proposed method.
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FIGURE 11 | Bar graph with different features selection methods (A) the AD vs. HC group, (B) the AD vs. MCI group, (C) the HC vs. MCI group, and (D) the MCIs
vs. MCIc group on different feature vectors: Hippocampal-amygdala volume, Brain Network (BN), Voxel, and combined features set.

Supplementary Tables 1–4. It is also worth mentioning that
betweenness centrality contributed 70–75% of the features for
brain networks and 30–35% for the feature combination. Our
findings imply that the betweenness centrality in a functional
network conveys more disease information and that the top
selected features are more responsive to more efficient detection
for MCIs vs. MCIc and HC vs. MCI. Our findings are consistent
with earlier research, and these specific brain areas have been
linked to AD and MCI conversion (Liu et al., 2013). The
importance of numerous brain areas in MCI pathology has long
been acknowledged.

Previous studies noted the network distortion in the temporal
lobe area in individuals with Alzheimer’s (He et al., 2009).
In other studies (Liu et al., 2013) also noted the functional
loss in the middle temporal gyrus (MTG) and PreCG in AD
patients. In comparison with previous literature, we notice that
the temporal lobe area may be more damaged in the AD
and initial MCI. The MTG was highly sensitive in the feature
selection for MCI and AD classification. The nodal degree in the
superior temporal gyrus (STG), Cuneus (CUN), precentral gyrus
(PreCG), and MTG as well as the betweenness centrality in the
hippocampus (HIP), Amygdala (AMYG), and inferior temporal
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gyrus (ITG) were shown to be discriminative in distinguishing
AD from HC. Similar trends were followed by MCIs from
MCIc classification. The nodal degree in the STG, middle
temporal gyrus (MTG), and CUN as well as the betweenness
centrality in the amygdala (AMYG) and Hippocampus (HIP)
were shown to be discriminative in distinguishing MCIs from
MCIc Supplementary Table 4. In summary, the highly sensitive
features were selected for the brain network using the JMI
algorithm. Moreover, the selected brain area carries more
information about the disease with more sensitive features which
leads to more accurate performance. The temporal region plays
an important role in MCI and AD. We also suggested that the
other region such as the caudate nucleus, superfrontal gyrus,
orbitofrontal cortex, occipital, etc. regions for further exploration
of the disease pathology in AD.

Limitations
Our study has a few drawbacks. First, the sample size is
limited, which may impair the robustness of the group’s
statistical analysis. Further analysis with a bigger sample size
with different datasets should be carried out. The unbalance
data is another drawback. We aimed to analyze high-quality
data with more balanced samples for feature selection and
classification in the future or to design a more robust approach
that enhances classification accuracy and generalization; the
model’s generalization should be considered by using a different
database besides ADNI. Because the ADNI database is growing,
future research should acquire a bigger sample and should
balance the number of individuals. Future research should also
look at different networks analysis and classification approaches
in different phases of AD, as well as the interpretability of
functional brain abnormalities. The ability to evaluate the models’
resilience across numerous data sets will be required. We think
that the follow-up data within the subject can better show the
brain area where the sensitive features of the altered biomarker
are present in terms of subject design. More significant and
accurate findings may be produced if participants may record
follow-up data through cognitive training while also maintaining
a baseline control.

CONCLUSION

Alzheimer’s disease is an irreversible and a leading health
problem in older age; it is important to consider the protective
response and to slow down the onset of the advancement of
Alzheimer’s. Thus, the proper identification of various stages of
Alzheimer’s and MCI progression is important. In this article,
we utilized the hippocampal subfield and the amygdala nuclei
volume obtained from sMRI in combination with brain network
features and multi-measure features obtained from rs-fMRI. So
far, several anatomical MRI imaging biomarkers for AD diagnosis
have been identified. The use of the cortical and subcortical
volume, the hippocampus, and the amygdala volume has proven
to be beneficial in distinguishing patients with AD from the
healthy population. Similarly, the rs-fMRI data provides specific
numerical information but also contributes to the rich dynamic

temporal correlation. However, those preceding studies used
either of the biomarker hippocampal subfield and amygdala
volume, brain networks, or voxel-based multi-measure features
separately. Thus, to analyze the full potentiality of sMRI and rs-
fMRI in AD identification, we utilized the combined features in
our studies. Additionally, we utilized and compared the different
features selection algorithm to select the optimal feature set to
obtain the maximum classification accuracy. We also compared
the performance of SVM with an RF classifier. From the results
obtained, JMI feature selection with the SVM algorithm among
all others significantly improved the performance accuracy.
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